Recombinant Salmonella Expressing Burkholderia mallei LPS O Antigen Provides Protection in a Murine Model of Melioidosis and Glanders
نویسندگان
چکیده
Burkholderia pseudomallei and Burkholderia mallei are the etiologic agents of melioidosis and glanders, respectively. These bacteria are highly infectious via the respiratory route and can cause severe and often fatal diseases in humans and animals. Both species are considered potential agents of biological warfare; they are classified as category B priority pathogens. Currently there are no human or veterinary vaccines available against these pathogens. Consequently efforts are directed towards the development of an efficacious and safe vaccine. Lipopolysaccharide (LPS) is an immunodominant antigen and potent stimulator of host immune responses. B. mallei express LPS that is structurally similar to that expressed by B. pseudomallei, suggesting the possibility of constructing a single protective vaccine against melioidosis and glanders. Previous studies of others have shown that antibodies against B. mallei or B. pseudomallei LPS partially protect mice against subsequent lethal virulent Burkholderia challenge. In this study, we evaluated the protective efficacy of recombinant Salmonella enterica serovar Typhimurium SL3261 expressing B. mallei O antigen against lethal intranasal infection with Burkholderia thailandensis, a surrogate for biothreat Burkholderia spp. in a murine model that mimics melioidosis and glanders. All vaccine-immunized mice developed a specific antibody response to B. mallei and B. pseudomallei O antigen and to B. thailandensis and were significantly protected against challenge with a lethal dose of B. thailandensis. These results suggest that live-attenuated SL3261 expressing B. mallei O antigen is a promising platform for developing a safe and effective vaccine.
منابع مشابه
Characterization of the Burkholderia mallei tonB Mutant and Its Potential as a Backbone Strain for Vaccine Development
BACKGROUND In this study, a Burkholderia mallei tonB mutant (TMM001) deficient in iron acquisition was constructed, characterized, and evaluated for its protective properties in acute inhalational infection models of murine glanders and melioidosis. METHODOLOGY/PRINCIPAL FINDINGS Compared to the wild-type, TMM001 exhibits slower growth kinetics, siderophore hyper-secretion and the inability t...
متن کاملBurkholderia pseudomallei and Burkholderia mallei: Melioidosis and Glanders
The genus Burkholderia is currently composed of many species, but only three are notable pathogens for humans or animals: the former cepacia complex (described in Chapter 220) pseudomallei (the agent of melioidosis), and mallei (the agent of equine glanders). All three are aerobic, nonsporulating, straight or slightly curved gram-negative bacilli that were formerly placed in the genus Pseudomonas.
متن کاملEvaluation of recombinant proteins of Burkholderia mallei for serodiagnosis of glanders.
Glanders is a contagious disease caused by the Gram-negative bacillus Burkholderia mallei. The number of equine glanders outbreaks has increased steadily during the last decade. The disease must be reported to the Office International des Epizooties, Paris, France. Glanders serodiagnosis is hampered by the considerable number of false positives and negatives of the internationally prescribed te...
متن کاملProtection from pneumonic infection with burkholderia species by inhalational immunotherapy.
Burkholderia mallei and B. pseudomallei are important human pathogens and cause the diseases glanders and melioidosis, respectively. Both organisms are highly infectious when inhaled and are inherently resistant to many antimicrobials, thus making it difficult to treat pneumonic Burkholderia infections. We investigated whether it was possible to achieve rapid protection against inhaled Burkhold...
متن کاملA Burkholderia pseudomallei Outer Membrane Vesicle Vaccine Provides Cross Protection against Inhalational Glanders in Mice and Non-Human Primates
Burkholderia mallei is a Gram-negative, non-motile, facultative intracellular bacillus and the causative agent of glanders, a highly contagious zoonotic disease. B. mallei is naturally resistant to multiple antibiotics and there is concern for its potential use as a bioweapon, making the development of a vaccine against B. mallei of critical importance. We have previously demonstrated that immu...
متن کامل